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   Background:   It is not known whether the mild hypoxia experienced 
by passengers during commercial air travel triggers hypoxic pulmonary 
vasoconstriction and increases pulmonary artery pressure in fl ight. In-
sidious pulmonary hypertensive responses could endanger susceptible 
passengers who have cardiopulmonary disease or increased hypoxic 
pulmonary vascular sensitivity. Understanding these effects may improve 
pre-fl ight assessment of fi tness-to-fl y and reduce in-fl ight morbidity and 
mortality.   Methods:   Eight healthy volunteers were studied during a 
scheduled commercial airline fl ight from London, UK, to Denver, CO. 
The aircraft was a Boeing 777 and the duration of the fl ight was 9 h. 
Systolic pulmonary artery pressure (sPAP) was assessed by portable 
Doppler echocardiography during the fl ight and over the following week 
in Denver, where the altitude (5280 ft/1610 m) simulates a commercial 
airliner environment.   Results:   Cruising cabin altitude ranged between 
5840 and 7170 ft (1780 to 2185 m), and mean arterial oxygen saturation 
was 95  6  0.6% during the fl ight. Mean sPAP increased signifi cantly in 
fl ight by 6  6  1 mmHg to 33  6  1 mmHg, an increase of approximately 
20%. After landing in Denver, sPAP was still 3  6  1 mmHg higher than 
baseline and remained elevated at 30  6  1 mmHg for a further 12 h. 
  Conclusions:   Pulmonary artery pressure increases during commercial air 
travel in healthy passengers, raising the possibility that hypoxic pulmo-
nary hypertension could develop in susceptible individuals. A hypoxia 
altitude simulation test with simultaneous echocardiography ( ‘ HAST-
echo ’ ) may be benefi cial in assessing fi tness to fl y in vulnerable patients.   
 Keywords:   in-fl ight hypoxia  ,   pulmonary vascular response  ,   hypoxic pul-
monary vasoconstriction  ,   pulmonary hypertension  ,   hypoxic challenge test  .     

 PASSENGERS ROUTINELY experience mild hyp-
oxia during commercial air travel ( 26 ). In most 

healthy passengers arterial oxygen saturation (S p  o  2 ) 
falls to 90 – 95% in fl ight, although more severe hypox-
emia occurs in some normal individuals and in many 
patients with respiratory disease ( 20 , 21 , 26 ). Although 
commercial air travel is very safe, if this attendant hyp-
oxia were to endanger even 1% of passengers world-
wide, this would mean up to 20 million people were at 
risk every year ( 26 ). 

 Routine in-fl ight hypoxia results from the reduced 
atmospheric pressure within the aircraft cabin, which 
refl ects a compromise between the economic costs of 
higher pressurization and the dangers of hypoxia with 
lower pressures. Cabin pressure is conventionally ex-
pressed as its altitude equivalent and typically ranges 
between 5000 ft (1524 m) and a maximum limit of 8000 ft 
(2438 m), which is not mandated and is occasionally 
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exceeded ( 1 , 7 ). This 8000-ft ceiling arose in the World 
War II era, when aviators were predominantly young 
and healthy, but its suitability as a universal hypoxic 
safety limit has been questioned for at least 40 yr ( 16 ). 
Older and less healthy people are increasingly travelling 
by air and the Aviation Safety Committee of the Aero-
space Medical Association recently recommended fur-
ther research into the physiological effects of aircraft 
cabin hypoxia ( 1 ). 

 Air travel is already known to activate some elements 
of the human response to hypoxia, including an increase 
in ventilation and increased secretion of erythropoietin 
( 10 , 14 , 30 ). Another classic response, hypoxic pulmonary 
vasoconstriction, could be more relevant clinically, but 
has yet to be studied in this setting. Through this phe-
nomenon, hypoxia causes an increase in pulmonary ar-
tery pressure that can lead to pulmonary hypertension 
and ultimately right heart failure, such as in hypoxic 
lung disease and at high altitude ( 5 , 23 , 30 ). Textbooks 
and guidelines refer widely to animal work, but cur-
rently it is not known whether the mild hypoxia of air 
travel triggers hypoxic pulmonary vasoconstriction in 
humans and increases pulmonary artery pressure in 
fl ight ( 24 ). 

 Such an effect could be important for some passen-
gers. Hypoxic pulmonary vasoreactivity varies greatly 
between individuals and high reactivity predisposes to 
hypoxia-related diseases such as high-altitude pulmo-
nary edema ( 6 ). Susceptible individuals may similarly 
be at risk of hypoxia-induced pulmonary hypertension 
and its sequelae during air travel. In-fl ight cardiac emer-
gencies are the most common cause of fl ight diversions 
and in-fl ight deaths ( 8 ), and silent pulmonary hyperten-
sion could be a contributing factor in some instances. 
This possibility is supported by case reports describing 
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the onset of acute cor pulmonale in air passengers dur-
ing commercial fl ights ( 22 , 33 ). 

 Understanding the pulmonary vascular effects of 
commercial air travel would be helpful in assessing pa-
tients for fi tness to fl y. Currently many patients with car-
diopulmonary disease must use supplementary oxygen 
in fl ight, while for others the risks of hypoxia are consid-
ered too great and air travel is contraindicated ( 2 , 3 ). 
Aeromedical decisions are informed by extensive inter-
national guidelines ( 2 , 3 , 27 ), but for some conditions 
such as pulmonary hypertension these guidelines are 
limited by the absence of experimental evidence ( 19 ). 
Evidence is also lacking in conditions that cause in-
creased hypoxic pulmonary vasoreactivity such as 
Chuvash polycythemia, a rare hereditary form of eryth-
rocytosis ( 29 ). Through the use of in-fl ight echocardiog-
raphy, this study tested the hypothesis that air travel 
stimulates an increase in pulmonary artery pressure that 
might be clinically relevant for some passengers.  

 METHODS  

    Subjects 

 Eight healthy volunteers, four men and four women, 
participated in the study. Mean ( 6  SD) age was 31  6  
3 yr, with height 1.70  6  0.10 m and weight 72.5  6  14.8 kg. 
All subjects provided written informed consent. The 
study was approved by the Oxford Tropical Research 
Ethics Committee and by the airline, and was conducted 
in accordance with the Declaration of Helsinki.   

 Protocol 

 The study was undertaken on a Boeing 777-300 air-
craft in cooperation with the Captain and cabin crew. 
Subjects were studied during and after a 9-h scheduled 
passenger fl ight from London, UK, to Denver, CO. This 
fl ight was chosen because the altitude in Denver (5280 
ft; 1610 m) simulates the commercial aircraft cabin envi-
ronment, allowing further relevant measurements after 
landing. Cabin altitude was recorded continuously dur-
ing the fl ight. The primary outcome measure was the 
effect of air travel on systolic pulmonary artery pressure 
(sPAP) assessed by portable Doppler echocardiogra-
phy (Vivid-i portable echocardiography machine, GE 
Medical Systems, Chalfont St. Giles, Buckinghamshire, 
UK). Baseline echocardiographic measurements were 
conducted at the airport immediately prior to departure 
from London, and in-fl ight echocardiographic measure-
ments were made 3 hr and 6 hr after takeoff, with sub-
jects reclining across the rear-most row of seats in the 
economy class cabin. After landing, measurements were 
repeated at time-points corresponding to 12 h and 24 h 
post-takeoff. Daily measurements continued over the 
following week in Denver before subjects returned to 
the UK, where fi nal measurements were made 24 h after 
landing.   

 Dependent Measures 

 Heart rate and S p  o  2  were measured hourly through-
out the fl ight and daily in Denver using a fi ngertip pulse 

oximeter. A standard echocardiographic technique was 
used to determine sPAP ( 28 , 29 , 31 ). With subjects reclining 
in the left lateral position, the maximum velocity of a 
regurgitant jet of blood through the tricuspid valve was 
measured during systole. Using this velocity and the 
modifi ed Bernoulli equation, the maximum systolic pres-
sure gradient across the tricuspid valve was determined 
and sPAP was calculated using an estimated right atrial 
pressure of 5 mmHg ( 4 , 34 ). Cardiac output was also de-
termined by standard echocardiographic means using 
the left ventricular outfl ow tract cross-sectional area and 
pulsed Doppler velocity-time integral measurements.   

 Statistical Analysis 

 Changes in physiological data from baseline values 
were assessed statistically using Student’s two-tailed 
 t -test for paired samples and were considered signifi cant 
at the  P   ,  0.05 level. Values are reported as mean  6  SEM 
unless otherwise stated.     

 RESULTS 

 Baseline venous blood analyses were normal and are 
shown in     Table I  . During the fl ight the cruising cabin 
altitude ranged between 5840 and 7170 ft (1780 – 2185 m) 
and is presented in     Fig. 1  , which shows altitude 
throughout the study. S p  o  2  fell signifi cantly from 98  6  
0.5% at baseline to a mean of 95  6  0.6% during the 
fl ight, which was a signifi cant change on paired 
Student’s  t -test [ t (7)  5  4.50,  P   5  0.003]. Throughout the 
time in Denver the mean S p  o  2  was 97  6  0.5%, which 
was also signifi cantly lower than baseline [ t (7)  5  4.14, 
 P   5  0.004].         

  Fig. 1  shows sPAP throughout the study. During the 
fi rst in-fl ight echocardiographic measurements, the 
cabin altitude was 5840 ft (1780 m) and the mean S p  o  2  
was 96  6  0.7%. At the time of the second in-fl ight mea-
surements, cabin altitude was 6530 ft (1990 m) and mean 
S p  o  2  was 95  6  0.9%. During the fl ight sPAP increased by 
6  6  1 mmHg to 33  6  1 mmHg, which was signifi cantly 
higher than baseline [ t (7)  5   2 4.85,  P   5  0.002]. This was 
an increase of approximately 20% and varied over a 
fi vefold range between the subjects. After landing in 
Denver, sPAP was still 3  6  1 mmHg higher than baseline 
and remained elevated for a further 12 h at 30  6  1 
mmHg, signifi cantly higher than baseline on paired Stu-
dent’s  t -test [ t (7)  5   2 3.64,  P   5  0.008]. After this point 
sPAP gradually returned to the normal baseline level. 
There were no signifi cant changes in heart rate or car-
diac output.   

  TABLE I.         BASELINE VENOUS BLOOD ANALYSES.  

  Hemoglobin (12.0 – 17.0 g  z  dl  2 1 ) 14.0  6  1.1 
 Hematocrit (0.36 – 0.50 L/L) 0.43  6  0.03 
 Mean Cell Volume (83 – 105 fl ) 90.7  6  5.2 
 Serum Iron (11 – 31  m mol  z  L  2 1 ) 20.2  6  4.9 
 Serum Ferritin (10 – 300  m g  z  L  2 1 ) 75.4  6  69.9 
 Serum Transferrin (1.8 – 3.6 g  z  L  2 1 ) 2.7  6  0.5  

   Mean  6  SD values are shown. Where normal ranges vary with sex, the 
widest range is given.   
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 DISCUSSION 

 This study has established that pulmonary artery 
pressure increases during commercial air travel in healthy 
passengers. Mean in-fl ight values approached the sPAP 
threshold for pulmonary hypertension, which has been 
defi ned as 36 mmHg ( 17 ). Airlines commonly maintain 
higher cabin altitudes and fl y much longer ultra-long-
haul routes of up to 19 h (e.g., Singapore – Newark), car-
rying a potential for greater hypoxia and higher pulmonary 
artery pressures even into the pulmonary hypertensive 
range. 

 Prior to this study, acute hypoxic pulmonary vasocon-
striction had not been demonstrated in humans at such 
modest altitudes and with such mild hypoxia. These 
fi ndings support previously controversial reports claim-
ing that, in rare individuals who are otherwise healthy, 
high-altitude pulmonary edema can develop at altitudes 
below 8000 ft (2438 m) ( 12 , 25 ). While the phenomenon 
we observed is inconsequential for the vast majority of 
air passengers, it may be less benign in those with exag-
gerated pulmonary vasoreactivity and the potential for 

exacerbating or precipitating cardiopulmonary disease. 
At the extreme, this includes critically ill patients under-
going aeromedical transportation, which is an expand-
ing area of civilian and military intensive care medicine 
where even subtle changes in cardiopulmonary function 
can be hazardous ( 32 ). 

 More generally, our results suggest that there may be 
an important role for echocardiography in evaluating 
patient fi tness to fl y. The hypoxia altitude simulation 
test (HAST) is a standardized pre-fl ight assessment tool 
that has increasingly been used in patients with chronic 
obstructive pulmonary disease (COPD) over the past 
25 yr ( 13 , 18 ). The patient breathes a hypoxic gas mixture 
of 15.1% oxygen, replicating the effects of an altitude of 
8000 ft (2438 m), and the resultant changes in S p  o  2  and 
arterial blood gases are used to predict the severity of 
in-fl ight hypoxemia. The patient is also monitored for 
symptoms and for myocardial ischemia or arrhythmias, 
and the overall aim is to reduce in-fl ight morbidity and 
mortality. 

 In selected patients, expanding the HAST to include 
simultaneous echocardiography (termed here  ‘ HAST-
echo ’ ) could allow prediction of in-fl ight changes in 
pulmonary artery pressure and ventricular function, al-
lowing more accurate assessment of whether air travel 
is safe and whether in-fl ight supplementary oxygen is 
indicated. Potentially this could reduce the incidence of 
in-fl ight medical emergencies, fl ight diversions, and in-
fl ight deaths in patients with COPD, pulmonary hyper-
tension, other obstructive and restrictive lung disease, 
and cardiac disease ( 2 , 3 , 27 ). HAST-echo could also be 
benefi cial in non-cardiopulmonary conditions that are 
associated with increased hypoxic pulmonary vasoreac-
tivity, such as Chuvash polycythemia ( 29 ) [and related 
genetic diseases ( 11 )] and iron defi ciency ( 28 , 31 ), and the 
pulmonary vascular effects of air travel should be inves-
tigated in these groups. Pulmonary vasoconstriction in-
tensifi es for at least 2 h with sustained hypoxia ( 9 ) and 
HAST-echo of a similar duration would presumably 
have the greatest predictive benefi t. Although it is likely 
that the normobaric HAST and the hypobaric hypoxia 
of air travel induce similar pulmonary vascular re-
sponses ( 15 , 21 ), this may not necessarily be the case, and 
confi rmatory studies are required. 

 In summary, this study provides experimental evi-
dence demonstrating that pulmonary artery pressure 
increases during a commercial airline fl ight. Further 
research is warranted to determine whether excessive 
in-fl ight pulmonary hypertensive responses can endan-
ger susceptible passengers and whether incorporating 
HAST-echo into aeromedical assessments can improve 
the safety of air travel.    
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  Fig.     1.         Altitude (top) and systolic pulmonary artery pressure (bottom) 
during and after a commercial airline fl ight. For the duration of the fl ight, 
the altitude presented is the equivalent cabin altitude, which should not 
normally exceed 8000 ft (2438 m). Measurement time points are indi-
cated by white symbols in the upper panel and black symbols in the 
lower panel. Data are mean  6  SEM and asterisks denote a signifi cant 
change from the baseline value ( P   ,  0.05).    
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